Clustering Countries By K-Means Method According To Causes Of Death
نویسندگان
چکیده
منابع مشابه
Hartigan's Method: k-means Clustering without Voronoi
Hartigan’s method for k-means clustering is the following greedy heuristic: select a point, and optimally reassign it. This paper develops two other formulations of the heuristic, one leading to a number of consistency properties, the other showing that the data partition is always quite separated from the induced Voronoi partition. A characterization of the volume of this separation is provide...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملcauses of death in newborn infants according to autopsy findings
autopsy findings in 138 newborn infants which died in a university nursery during 3 years are reviewed and discussed. 80 per cent were premature and small- for- date newborns of up to 2500 g birth weight. most of these cases showed in addition to general prematurely signs, respiratory tract diseases such as atelectasia, amniotic fluid aspiration and hyaline membrane disease. the full term infan...
متن کاملGROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION
Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...
متن کاملAdaptive K-Means Clustering
Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Alphanumeric Journal
سال: 2020
ISSN: 2148-2225
DOI: 10.17093/alphanumeric.588835